Nuprl Lemma : insert-int-lex
∀as,bs:ℤ List. ∀x:ℤ.  ((↑as ≤_lex bs) 
⇒ (↑insert-int(x;as) ≤_lex insert-int(x;bs)))
Proof
Definitions occuring in Statement : 
intlex: l1 ≤_lex l2
, 
insert-int: insert-int(x;l)
, 
list: T List
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cons: [a / b]
, 
subtype_rel: A ⊆r B
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
insert-int: insert-int(x;l)
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
has-value: (a)↓
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
less_than': less_than'(a;b)
, 
true: True
, 
not: ¬A
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
subtract: n - m
, 
nat_plus: ℕ+
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
assert_witness, 
intlex_wf, 
insert-int_wf, 
list-cases, 
nil_wf, 
insert_int_nil_lemma, 
intlex-cons-same, 
istype-assert, 
istype-int, 
product_subtype_list, 
colength-cons-not-zero, 
subtract-1-ge-0, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
spread_cons_lemma, 
list_ind_cons_lemma, 
value-type-has-value, 
list_wf, 
list-value-type, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
cons_wf, 
istype-nat, 
colength_wf_list, 
le_weakening2, 
istype-le, 
istype-void, 
sq_stable__le, 
decidable__equal_int, 
subtract_wf, 
istype-false, 
not-equal-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
minus-minus, 
intlex-by-length, 
length_of_cons_lemma, 
length_of_nil_lemma, 
length_wf, 
non_neg_length, 
length_wf_nat, 
istype-sqequal, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
not-lt-2, 
omega-shadow, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
length-insert-int, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__lt, 
intlex-length, 
add-zero, 
minus-zero, 
intlex-cons, 
less-iff-le, 
le-add-cancel2, 
list_subtype_base, 
le_weakening, 
equal_wf, 
istype-universe, 
length_cons, 
mul-distributes, 
mul-associates, 
less_than_transitivity2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
independent_pairFormation, 
productElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
closedConclusion, 
intEquality, 
because_Cache, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
Error :memTop, 
promote_hyp, 
hypothesis_subsumption, 
equalityIstype, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce, 
equalityElimination, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
addEquality, 
minusEquality, 
baseApply, 
applyEquality, 
sqequalBase, 
multiplyEquality, 
universeEquality, 
inlFormation_alt, 
unionIsType, 
productIsType, 
inrFormation_alt
Latex:
\mforall{}as,bs:\mBbbZ{}  List.  \mforall{}x:\mBbbZ{}.    ((\muparrow{}as  \mleq{}\_lex  bs)  {}\mRightarrow{}  (\muparrow{}insert-int(x;as)  \mleq{}\_lex  insert-int(x;bs)))
Date html generated:
2020_05_19-PM-09_37_41
Last ObjectModification:
2019_12_26-PM-00_32_18
Theory : list_0
Home
Index