Nuprl Lemma : insert-int-lex

as,bs:ℤ List. ∀x:ℤ.  ((↑as ≤_lex bs)  (↑insert-int(x;as) ≤_lex insert-int(x;bs)))


Proof




Definitions occuring in Statement :  intlex: l1 ≤_lex l2 insert-int: insert-int(x;l) list: List assert: b all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: or: P ∨ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cons: [a b] subtype_rel: A ⊆B colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] insert-int: insert-int(x;l) so_lambda: so_lambda3 so_apply: x[s1;s2;s3] has-value: (a)↓ bool: 𝔹 unit: Unit btrue: tt less_than': less_than'(a;b) true: True not: ¬A bfalse: ff exists: x:A. B[x] bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q sq_stable: SqStable(P) decidable: Dec(P) subtract: m nat_plus: +
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than assert_witness intlex_wf insert-int_wf list-cases nil_wf insert_int_nil_lemma intlex-cons-same istype-assert istype-int product_subtype_list colength-cons-not-zero subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma list_ind_cons_lemma value-type-has-value list_wf list-value-type lt_int_wf eqtt_to_assert assert_of_lt_int istype-top eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf cons_wf istype-nat colength_wf_list le_weakening2 istype-le istype-void sq_stable__le decidable__equal_int subtract_wf istype-false not-equal-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top le_antisymmetry_iff add_functionality_wrt_le add-commutes zero-add le-add-cancel minus-minus intlex-by-length length_of_cons_lemma length_of_nil_lemma length_wf non_neg_length length_wf_nat istype-sqequal le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul not-lt-2 omega-shadow squash_wf true_wf add_functionality_wrt_eq length-insert-int subtype_rel_self iff_weakening_equal decidable__lt intlex-length add-zero minus-zero intlex-cons less-iff-le le-add-cancel2 list_subtype_base le_weakening equal_wf istype-universe length_cons mul-distributes mul-associates less_than_transitivity2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination universeIsType sqequalRule lambdaEquality_alt dependent_functionElimination closedConclusion intEquality because_Cache functionIsTypeImplies inhabitedIsType unionElimination Error :memTop,  promote_hyp hypothesis_subsumption equalityIstype instantiate cumulativity equalityTransitivity equalitySymmetry callbyvalueReduce equalityElimination lessCases isect_memberFormation_alt axiomSqEquality isect_memberEquality_alt isectIsTypeImplies imageMemberEquality baseClosed dependent_pairFormation_alt dependent_set_memberEquality_alt applyLambdaEquality addEquality minusEquality baseApply applyEquality sqequalBase multiplyEquality universeEquality inlFormation_alt unionIsType productIsType inrFormation_alt

Latex:
\mforall{}as,bs:\mBbbZ{}  List.  \mforall{}x:\mBbbZ{}.    ((\muparrow{}as  \mleq{}\_lex  bs)  {}\mRightarrow{}  (\muparrow{}insert-int(x;as)  \mleq{}\_lex  insert-int(x;bs)))



Date html generated: 2020_05_19-PM-09_37_41
Last ObjectModification: 2019_12_26-PM-00_32_18

Theory : list_0


Home Index