Nuprl Lemma : intlex-length

[l1,l2:ℤ List].  ||l1|| ≤ ||l2|| supposing ↑l1 ≤_lex l2


Proof




Definitions occuring in Statement :  intlex: l1 ≤_lex l2 length: ||as|| list: List assert: b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a intlex: l1 ≤_lex l2 has-value: (a)↓ nat: so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False prop: all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) top: Top assert: b ifthenelse: if then else fi  guard: {T} bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb bor: p ∨bq band: p ∧b q subtype_rel: A ⊆B
Lemmas referenced :  value-type-has-value nat_wf set-value-type le_wf int-value-type length_wf_nat less_than'_wf length_wf assert_wf intlex_wf list_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int testxxx_lemma le_weakening2 true_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf eq_int_wf assert_of_eq_int le_weakening intlex-aux_wf equal-wf-base list_subtype_base int_subtype_base neg_assert_of_eq_int false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule callbyvalueReduce extract_by_obid isectElimination thin hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality productElimination independent_pairEquality dependent_functionElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination lambdaFormation unionElimination equalityElimination voidEquality dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination dependent_set_memberEquality baseApply closedConclusion baseClosed applyEquality

Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].    ||l1||  \mleq{}  ||l2||  supposing  \muparrow{}l1  \mleq{}\_lex  l2



Date html generated: 2017_09_29-PM-05_49_15
Last ObjectModification: 2017_07_26-PM-01_37_34

Theory : list_0


Home Index