Nuprl Lemma : intlex-by-length
∀[l1,l2:ℤ List].  ↑l1 ≤_lex l2 supposing ||l1|| < ||l2||
Proof
Definitions occuring in Statement : 
intlex: l1 ≤_lex l2
, 
length: ||as||
, 
list: T List
, 
assert: ↑b
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
intlex: l1 ≤_lex l2
, 
has-value: (a)↓
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
true: True
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
false: False
, 
not: ¬A
, 
bor: p ∨bq
Lemmas referenced : 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
length_wf_nat, 
lt_int_wf, 
length_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
testxxx_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
assert_witness, 
intlex_wf, 
less_than_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination
Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].    \muparrow{}l1  \mleq{}\_lex  l2  supposing  ||l1||  <  ||l2||
Date html generated:
2017_09_29-PM-05_49_18
Last ObjectModification:
2017_07_26-PM-01_37_39
Theory : list_0
Home
Index