Nuprl Lemma : intlex-by-length

[l1,l2:ℤ List].  ↑l1 ≤_lex l2 supposing ||l1|| < ||l2||


Proof




Definitions occuring in Statement :  intlex: l1 ≤_lex l2 length: ||as|| list: List assert: b less_than: a < b uimplies: supposing a uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a intlex: l1 ≤_lex l2 has-value: (a)↓ nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q top: Top assert: b ifthenelse: if then else fi  true: True bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb false: False not: ¬A bor: p ∨bq
Lemmas referenced :  value-type-has-value nat_wf set-value-type le_wf int-value-type length_wf_nat lt_int_wf length_wf bool_wf eqtt_to_assert assert_of_lt_int testxxx_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert_witness intlex_wf less_than_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality because_Cache lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination

Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].    \muparrow{}l1  \mleq{}\_lex  l2  supposing  ||l1||  <  ||l2||



Date html generated: 2017_09_29-PM-05_49_18
Last ObjectModification: 2017_07_26-PM-01_37_39

Theory : list_0


Home Index