Nuprl Lemma : isaxiom-wf-colist

[T:Type]. ∀[x:colist(T)].  (isaxiom(x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  colist: colist(T) bfalse: ff btrue: tt bool: 𝔹 uall: [x:A]. B[x] isaxiom: if Ax then otherwise b member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t)
Lemmas referenced :  colist-ext colist_wf btrue_wf bfalse_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination introduction sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality hypothesis_subsumption applyEquality imageElimination unionElimination equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[x:colist(T)].    (isaxiom(x)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-AM-06_25_25
Last ObjectModification: 2015_12_26-PM-00_42_30

Theory : list_0


Home Index