Nuprl Lemma : colist-ext
∀[T:Type]. colist(T) ≡ Unit ⋃ (T × colist(T))
Proof
Definitions occuring in Statement : 
colist: colist(T)
, 
b-union: A ⋃ B
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
colist: colist(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
corec-ext, 
b-union_wf, 
unit_wf2, 
list-functor
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
productEquality, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  colist(T)  \mequiv{}  Unit  \mcup{}  (T  \mtimes{}  colist(T))
Date html generated:
2016_05_14-AM-06_25_22
Last ObjectModification:
2015_12_26-PM-00_42_32
Theory : list_0
Home
Index