Nuprl Lemma : colist-ext

[T:Type]. colist(T) ≡ Unit ⋃ (T × colist(T))


Proof




Definitions occuring in Statement :  colist: colist(T) b-union: A ⋃ B ext-eq: A ≡ B uall: [x:A]. B[x] unit: Unit product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T colist: colist(T) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  corec-ext b-union_wf unit_wf2 list-functor
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesis productEquality hypothesisEquality universeEquality independent_isectElimination productElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[T:Type].  colist(T)  \mequiv{}  Unit  \mcup{}  (T  \mtimes{}  colist(T))



Date html generated: 2016_05_14-AM-06_25_22
Last ObjectModification: 2015_12_26-PM-00_42_32

Theory : list_0


Home Index