Nuprl Lemma : list-functor

[T:Type]. ContinuousMonotone(L.Unit ⋃ (T × L))


Proof




Definitions occuring in Statement :  continuous-monotone: ContinuousMonotone(T.F[T]) b-union: A ⋃ B uall: [x:A]. B[x] unit: Unit product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) guard: {T} ext-eq: A ≡ B decidable: Dec(P) or: P ∨ Q nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: b-union: A ⋃ B tunion: x:A.B[x] ifthenelse: if then else fi  btrue: tt pi2: snd(t) bfalse: ff top: Top pi1: fst(t)
Lemmas referenced :  subtype_rel_b-union unit_wf2 subtype_rel_self subtype_rel_product subtype_rel_wf subtype_rel_weakening nat_wf b-union_wf decidable__equal_bool btrue_wf false_wf le_wf isaxiom_wf_listunion equal_wf ifthenelse_wf axiom-listunion bfalse_wf non-axiom-listunion bool_cases pair-eta top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis productEquality cumulativity hypothesisEquality because_Cache independent_isectElimination sqequalRule lambdaEquality lambdaFormation axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality isectEquality applyEquality functionExtensionality functionEquality instantiate productElimination independent_pairEquality dependent_functionElimination unionElimination dependent_set_memberEquality natural_numberEquality independent_functionElimination imageMemberEquality dependent_pairEquality baseClosed voidElimination voidEquality applyLambdaEquality

Latex:
\mforall{}[T:Type].  ContinuousMonotone(L.Unit  \mcup{}  (T  \mtimes{}  L))



Date html generated: 2017_04_14-AM-07_54_08
Last ObjectModification: 2017_02_27-PM-03_20_58

Theory : list_0


Home Index