Nuprl Lemma : l_all_nil_iff

[P:Top]. uiff((∀x∈[].P[x]);True)


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) nil: [] uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top so_apply: x[s] true: True
Definitions unfolded in proof :  l_all: (∀x∈L.P[x]) select: L[n] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uiff: uiff(P;Q) and: P ∧ Q true: True prop: so_lambda: λ2x.t[x] int_seg: {i..j-} false: False lelt: i ≤ j < k guard: {T} implies:  Q so_apply: x[s]
Lemmas referenced :  top_wf true_wf less_than_irreflexivity less_than_transitivity1 int_seg_wf all_wf base_wf stuck-spread length_of_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin baseClosed independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality isect_memberFormation independent_pairFormation introduction natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache lambdaEquality setElimination rename productElimination hypothesisEquality independent_functionElimination

Latex:
\mforall{}[P:Top].  uiff((\mforall{}x\mmember{}[].P[x]);True)



Date html generated: 2016_05_14-AM-06_40_05
Last ObjectModification: 2016_01_14-PM-08_20_45

Theory : list_0


Home Index