Nuprl Lemma : l_exists_single
∀[T:Type]. ∀[P:T ⟶ ℙ].  ∀x:T. ((∃y∈[x]. P[y]) 
⇐⇒ P[x])
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x])
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
and_wf, 
equal_wf, 
exists_wf, 
member_singleton, 
l_member_wf, 
cons_wf, 
nil_wf, 
iff_wf, 
l_exists_iff, 
l_exists_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
dependent_set_memberEquality, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
productEquality, 
because_Cache, 
dependent_pairFormation, 
addLevel, 
independent_functionElimination, 
dependent_functionElimination, 
cumulativity, 
setEquality, 
instantiate, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x:T.  ((\mexists{}y\mmember{}[x].  P[y])  \mLeftarrow{}{}\mRightarrow{}  P[x])
Date html generated:
2019_06_20-PM-00_41_17
Last ObjectModification:
2018_08_24-PM-11_01_16
Theory : list_0
Home
Index