Nuprl Lemma : l_exists_single

[T:Type]. ∀[P:T ⟶ ℙ].  ∀x:T. ((∃y∈[x]. P[y]) ⇐⇒ P[x])


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) cons: [a b] nil: [] uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] prop: member: t ∈ T so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  and_wf equal_wf exists_wf member_singleton l_member_wf cons_wf nil_wf iff_wf l_exists_iff l_exists_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation sqequalHypSubstitution productElimination thin hypothesis hyp_replacement equalitySymmetry sqequalRule dependent_set_memberEquality hypothesisEquality introduction extract_by_obid isectElimination applyLambdaEquality setElimination rename applyEquality lambdaEquality productEquality because_Cache dependent_pairFormation addLevel independent_functionElimination dependent_functionElimination cumulativity setEquality instantiate functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x:T.  ((\mexists{}y\mmember{}[x].  P[y])  \mLeftarrow{}{}\mRightarrow{}  P[x])



Date html generated: 2019_06_20-PM-00_41_17
Last ObjectModification: 2018_08_24-PM-11_01_16

Theory : list_0


Home Index