Step
*
3
2
of Lemma
l_member_decomp
1. [T] : Type
2. u : T
3. v : T List
4. ∀x:T. ((x ∈ v)
⇐⇒ ∃l1,l2:T List. (v = (l1 @ [x / l2]) ∈ (T List)))
5. x : T
6. u1 : T
7. v1 : T List
8. l2 : T List
9. [u / v] = [u1 / (v1 @ [x / l2])] ∈ (T List)
⊢ (x = u ∈ T) ∨ (x ∈ v)
BY
{ (Subst v = (v1 @ [x / l2]) ∈ (T List) 0⋅ THEN Auto) }
Latex:
Latex:
1. [T] : Type
2. u : T
3. v : T List
4. \mforall{}x:T. ((x \mmember{} v) \mLeftarrow{}{}\mRightarrow{} \mexists{}l1,l2:T List. (v = (l1 @ [x / l2])))
5. x : T
6. u1 : T
7. v1 : T List
8. l2 : T List
9. [u / v] = [u1 / (v1 @ [x / l2])]
\mvdash{} (x = u) \mvee{} (x \mmember{} v)
By
Latex:
(Subst v = (v1 @ [x / l2]) 0\mcdot{} THEN Auto)
Home
Index