Nuprl Lemma : l_member_decomp

[T:Type]. ∀l:T List. ∀x:T.  ((x ∈ l) ⇐⇒ ∃l1,l2:T List. (l (l1 [x] l2) ∈ (T List)))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q iff: ⇐⇒ Q and: P ∧ Q false: False prop: rev_implies:  Q exists: x:A. B[x] or: P ∨ Q so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] cons: [a b] uimplies: supposing a sq_type: SQType(T) guard: {T} true: True not: ¬A uiff: uiff(P;Q) append: as bs squash: T cand: c∧ B nat: ge: i ≥  decidable: Dec(P) sq_stable: SqStable(P) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  list_induction all_wf iff_wf l_member_wf exists_wf list_wf equal_wf append_wf cons_wf nil_wf false_wf equal-wf-base-T nil_member or_wf cons_member equal-wf-T-base list-cases list_ind_nil_lemma product_subtype_list list_ind_cons_lemma subtype_base_sq int_subtype_base null_nil_lemma btrue_wf null_cons_lemma bfalse_wf and_wf null_wf btrue_neq_bfalse iff_transitivity iff_weakening_uiff append_is_nil squash_wf true_wf hd_wf length_of_nil_lemma cons_neq_nil length_of_cons_lemma length_wf_nat nat_wf decidable__le not-ge-2 sq_stable__le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 reduce_hd_cons_lemma tl_wf reduce_tl_cons_lemma member_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis independent_functionElimination independent_pairFormation voidElimination productElimination baseClosed because_Cache addLevel allFunctionality impliesFunctionality dependent_functionElimination rename universeEquality equalitySymmetry equalityTransitivity productEquality applyLambdaEquality unionElimination isect_memberEquality voidEquality natural_numberEquality promote_hyp hypothesis_subsumption instantiate intEquality independent_isectElimination dependent_set_memberEquality setElimination dependent_pairFormation applyEquality imageElimination imageMemberEquality addEquality minusEquality inlFormation inrFormation hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}x:T.    ((x  \mmember{}  l)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}l1,l2:T  List.  (l  =  (l1  @  [x]  @  l2)))



Date html generated: 2017_04_14-AM-08_41_14
Last ObjectModification: 2017_02_27-PM-03_31_54

Theory : list_0


Home Index