Step
*
of Lemma
list-functionality-induction
∀T,A:Type. ∀F:Base.
((F[[]] ∈ A)
⇒ (∀a1,a2,L1,L2:Base. ((a1 = a2 ∈ T)
⇒ (F[L1] = F[L2] ∈ A)
⇒ (F[[a1 / L1]] = F[[a2 / L2]] ∈ A)))
⇒ (∀L:T List. (F[L] ∈ A)))
BY
{ (Auto THEN (PointwiseFunctionalityForEquality (-1) THENA Auto)) }
1
1. T : Type
2. A : Type
3. F : Base
4. F[[]] ∈ A
5. ∀a1,a2,L1,L2:Base. ((a1 = a2 ∈ T)
⇒ (F[L1] = F[L2] ∈ A)
⇒ (F[[a1 / L1]] = F[[a2 / L2]] ∈ A))
6. L : Base
7. L1 : Base
8. L = L1 ∈ (T List)
⊢ F[L] = F[L1] ∈ A
Latex:
Latex:
\mforall{}T,A:Type. \mforall{}F:Base.
((F[[]] \mmember{} A)
{}\mRightarrow{} (\mforall{}a1,a2,L1,L2:Base. ((a1 = a2) {}\mRightarrow{} (F[L1] = F[L2]) {}\mRightarrow{} (F[[a1 / L1]] = F[[a2 / L2]])))
{}\mRightarrow{} (\mforall{}L:T List. (F[L] \mmember{} A)))
By
Latex:
(Auto THEN (PointwiseFunctionalityForEquality (-1) THENA Auto))
Home
Index