Nuprl Lemma : list-functionality-induction
∀T,A:Type. ∀F:Base.
  ((F[[]] ∈ A)
  
⇒ (∀a1,a2,L1,L2:Base.  ((a1 = a2 ∈ T) 
⇒ (F[L1] = F[L2] ∈ A) 
⇒ (F[[a1 / L1]] = F[[a2 / L2]] ∈ A)))
  
⇒ (∀L:T List. (F[L] ∈ A)))
Proof
Definitions occuring in Statement : 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
colength: colength(L)
, 
less_than: a < b
Lemmas referenced : 
list_wf, 
all_wf, 
base_wf, 
equal-wf-base, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
colength_wf_list, 
equal_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
int_subtype_base, 
nat_wf, 
colength-zero, 
subtype_rel_list, 
top_wf, 
colength-positive2, 
le_weakening2, 
le_wf, 
and_wf, 
pi1_wf, 
le_weakening, 
list-ext, 
ext-eq_inversion, 
b-union_wf, 
unit_wf2, 
subtype_rel_weakening, 
pi2_wf, 
decidable__int_equal, 
not-equal-2, 
le_antisymmetry_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
pointwiseFunctionalityForEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
because_Cache, 
universeEquality, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
axiomEquality, 
intEquality, 
applyEquality, 
applyLambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
imageMemberEquality, 
dependent_set_memberEquality, 
productEquality, 
hypothesis_subsumption, 
imageElimination, 
equalityElimination, 
setEquality
Latex:
\mforall{}T,A:Type.  \mforall{}F:Base.
    ((F[[]]  \mmember{}  A)
    {}\mRightarrow{}  (\mforall{}a1,a2,L1,L2:Base.    ((a1  =  a2)  {}\mRightarrow{}  (F[L1]  =  F[L2])  {}\mRightarrow{}  (F[[a1  /  L1]]  =  F[[a2  /  L2]])))
    {}\mRightarrow{}  (\mforall{}L:T  List.  (F[L]  \mmember{}  A)))
Date html generated:
2017_04_14-AM-07_54_33
Last ObjectModification:
2017_02_27-PM-03_22_02
Theory : list_0
Home
Index