Nuprl Lemma : map_is_nil
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[l:A List].  uiff(map(f;l) = [] ∈ (B List);l = [] ∈ (A List))
Proof
Definitions occuring in Statement : 
map: map(f;as), 
nil: [], 
list: T List, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
top: Top, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
not: ¬A, 
false: False
Lemmas referenced : 
list_induction, 
uiff_wf, 
equal-wf-T-base, 
list_wf, 
map_wf, 
map_nil_lemma, 
nil_wf, 
equal-wf-base, 
map_cons_lemma, 
null_nil_lemma, 
btrue_wf, 
and_wf, 
equal_wf, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
baseClosed, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
lambdaFormation, 
rename, 
productElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
applyLambdaEquality, 
setElimination, 
applyEquality, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[l:A  List].    uiff(map(f;l)  =  [];l  =  [])
 Date html generated: 
2019_06_20-PM-00_39_16
 Last ObjectModification: 
2018_08_07-PM-02_14_00
Theory : list_0
Home
Index