Nuprl Lemma : member_exists

[T:Type]. ∀L:T List. ∃x:T. (x ∈ L) supposing ¬(L [] ∈ (T List))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_member: (x ∈ l) uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False prop: or: P ∨ Q cons: [a b] top: Top guard: {T} nat: le: A ≤ B and: P ∧ Q decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True exists: x:A. B[x] cand: c∧ B sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal-wf-T-base list_wf list-cases length-nil nil_wf product_subtype_list cons_wf length_of_nil_lemma length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf not_wf select_wf le_wf less_than_wf length_wf sq_stable__le exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination extract_by_obid isectElimination cumulativity hypothesis baseClosed rename unionElimination independent_functionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry isect_memberEquality voidEquality setElimination natural_numberEquality addEquality independent_pairFormation independent_isectElimination applyEquality intEquality because_Cache minusEquality dependent_pairFormation dependent_set_memberEquality productEquality imageMemberEquality imageElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mexists{}x:T.  (x  \mmember{}  L)  supposing  \mneg{}(L  =  [])



Date html generated: 2017_04_14-AM-08_37_09
Last ObjectModification: 2017_02_27-PM-03_28_58

Theory : list_0


Home Index