Nuprl Lemma : no_repeats_inject

[T:Type]. ∀[l:T List].  uiff(no_repeats(T;l);Inj(ℕ||l||;T;λi.l[i]))


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) select: L[n] length: ||as|| list: List inject: Inj(A;B;f) int_seg: {i..j-} uiff: uiff(P;Q) uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a no_repeats: no_repeats(T;l) inject: Inj(A;B;f) all: x:A. B[x] implies:  Q prop: int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T not: ¬A false: False nat: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  equal_wf select_wf sq_stable__le int_seg_wf length_wf not_wf nat_wf less_than_wf no_repeats_witness no_repeats_wf inject_wf list_wf decidable__equal_int_seg int_seg_subtype_nat false_wf lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution lambdaFormation sqequalRule hypothesis extract_by_obid isectElimination thin because_Cache setElimination rename independent_isectElimination natural_numberEquality hypothesisEquality independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination cumulativity lambdaEquality dependent_functionElimination axiomEquality voidElimination isect_memberEquality equalityTransitivity equalitySymmetry independent_pairEquality universeEquality unionElimination applyEquality applyLambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    uiff(no\_repeats(T;l);Inj(\mBbbN{}||l||;T;\mlambda{}i.l[i]))



Date html generated: 2017_04_14-AM-08_39_51
Last ObjectModification: 2017_02_27-PM-03_30_12

Theory : list_0


Home Index