Nuprl Lemma : not-cons-sq-nil

[u,v:Top].  (([u v] []) (0 1) ∈ Type)


Proof




Definitions occuring in Statement :  cons: [a b] nil: [] uall: [x:A]. B[x] top: Top natural_number: $n universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A cons: [a b] nil: [] it: uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} true: True false: False
Lemmas referenced :  istype-top false-sqequal subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut pointwiseFunctionalityForEquality universeEquality hypothesis Error :inhabitedIsType,  hypothesisEquality sqequalRule sqequalHypSubstitution Error :isect_memberEquality_alt,  isectElimination thin axiomEquality extract_by_obid baseApply closedConclusion baseClosed independent_functionElimination Error :lambdaFormation_alt,  Error :universeIsType,  sqequalIntensionalEquality natural_numberEquality instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry voidElimination

Latex:
\mforall{}[u,v:Top].    (([u  /  v]  \msim{}  [])  =  (0  \msim{}  1))



Date html generated: 2019_06_20-PM-00_38_22
Last ObjectModification: 2018_10_07-PM-01_00_21

Theory : list_0


Home Index