Nuprl Lemma : not-not-l_all-xmiddle

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ].  (¬¬(∀x∈L.P[x] ∨ P[x])))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] not: ¬A or: P ∨ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} uimplies: supposing a sq_stable: SqStable(P) lelt: i ≤ j < k and: P ∧ Q squash: T prop: l_all: (∀x∈L.P[x]) or: P ∨ Q
Lemmas referenced :  not-not-all-int_seg-xmiddle length_wf select_wf sq_stable__le select_member l_member_wf int_seg_wf l_all_wf not_wf istype-void list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt thin extract_by_obid sqequalHypSubstitution dependent_functionElimination natural_numberEquality isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality_alt applyEquality dependent_set_memberEquality_alt setElimination rename because_Cache independent_isectElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination universeIsType voidElimination functionIsType unionEquality setIsType functionIsTypeImplies inhabitedIsType universeEquality isect_memberEquality_alt isectIsTypeImplies instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].    (\mneg{}\mneg{}(\mforall{}x\mmember{}L.P[x]  \mvee{}  (\mneg{}P[x])))



Date html generated: 2020_05_19-PM-09_37_13
Last ObjectModification: 2019_10_31-PM-10_12_26

Theory : list_0


Home Index