Nuprl Lemma : select_cons_hd

[T:Type]. ∀[a:T]. ∀[as:T List]. ∀[i:ℤ].  [a as][i] a ∈ supposing i ≤ 0


Proof




Definitions occuring in Statement :  select: L[n] cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top prop:
Lemmas referenced :  select-cons-hd le_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality independent_isectElimination hypothesis natural_numberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry intEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[as:T  List].  \mforall{}[i:\mBbbZ{}].    [a  /  as][i]  =  a  supposing  i  \mleq{}  0



Date html generated: 2016_05_14-AM-06_36_27
Last ObjectModification: 2015_12_26-PM-00_33_59

Theory : list_0


Home Index