Nuprl Lemma : select_cons_hd
∀[T:Type]. ∀[a:T]. ∀[as:T List]. ∀[i:ℤ].  [a / as][i] = a ∈ T supposing i ≤ 0
Proof
Definitions occuring in Statement : 
select: L[n]
, 
cons: [a / b]
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
select-cons-hd, 
le_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[as:T  List].  \mforall{}[i:\mBbbZ{}].    [a  /  as][i]  =  a  supposing  i  \mleq{}  0
Date html generated:
2016_05_14-AM-06_36_27
Last ObjectModification:
2015_12_26-PM-00_33_59
Theory : list_0
Home
Index