Nuprl Lemma : sq_stable__l_all

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ].  ((∀[x:{x:T| (x ∈ L)} ]. SqStable(P[x]))  SqStable((∀x∈L.P[x])))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q l_all: (∀x∈L.P[x]) member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k and: P ∧ Q squash: T all: x:A. B[x]
Lemmas referenced :  sq_stable__all sq_stable__le list-subtype select_wf length_wf int_seg_wf list_wf sq_stable_wf l_member_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality natural_numberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename independent_functionElimination introduction productElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x:\{x:T|  (x  \mmember{}  L)\}  ].  SqStable(P[x]))  {}\mRightarrow{}  SqStable((\mforall{}x\mmember{}L.P[x])))



Date html generated: 2016_05_14-AM-06_40_36
Last ObjectModification: 2016_01_14-PM-08_19_58

Theory : list_0


Home Index