Nuprl Lemma : sq_stable__l_all
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ].  ((∀[x:{x:T| (x ∈ L)} ]. SqStable(P[x])) ⇒ SqStable((∀x∈L.P[x])))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x]), 
l_member: (x ∈ l), 
list: T List, 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
l_all: (∀x∈L.P[x]), 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
and: P ∧ Q, 
squash: ↓T, 
all: ∀x:A. B[x]
Lemmas referenced : 
sq_stable__all, 
sq_stable__le, 
list-subtype, 
select_wf, 
length_wf, 
int_seg_wf, 
list_wf, 
sq_stable_wf, 
l_member_wf, 
uall_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
natural_numberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
introduction, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x:\{x:T|  (x  \mmember{}  L)\}  ].  SqStable(P[x]))  {}\mRightarrow{}  SqStable((\mforall{}x\mmember{}L.P[x])))
Date html generated:
2016_05_14-AM-06_40_36
Last ObjectModification:
2016_01_14-PM-08_19_58
Theory : list_0
Home
Index