Nuprl Lemma : sqequal-list_accum-list_ind
∀[F:Base]
  ∀[G:Base]
    ∀[H,J:Base].
      ∀as,b1,b2:Base.
        F[accumulate (with value v and list item a):
           H[v;a]
          over list:
            as
          with starting value:
           b1)] ~ G[b1;rec-case(as) of
                       [] => b2
                       h::t =>
                        r.J[h;r]] 
        supposing ∀x:Base. (F[x] ~ G[x;b2]) 
      supposing ∀a,b,c:Base.  (G[H[b;a];c] ~ G[b;J[a;c]]) 
    supposing ∀z:Base. strict1(λx.G[z;x]) 
  supposing strict1(λx.F[x])
Proof
Definitions occuring in Statement : 
list_accum: list_accum, 
list_ind: list_ind, 
strict1: strict1(F)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
strict1_wf, 
base_wf, 
all_wf, 
sqle-list_ind-list_accum, 
is-exception_wf, 
has-value_wf_base, 
sqle-list_accum-list_ind
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalSqle, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
divergentSqle, 
sqleReflexivity, 
baseApply, 
closedConclusion, 
baseClosed, 
because_Cache, 
sqequalAxiom, 
lambdaEquality, 
sqequalIntensionalEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[F:Base]
    \mforall{}[G:Base]
        \mforall{}[H,J:Base].
            \mforall{}as,b1,b2:Base.
                F[accumulate  (with  value  v  and  list  item  a):
                      H[v;a]
                    over  list:
                        as
                    with  starting  value:
                      b1)]  \msim{}  G[b1;rec-case(as)  of
                                              []  =>  b2
                                              h::t  =>
                                                r.J[h;r]] 
                supposing  \mforall{}x:Base.  (F[x]  \msim{}  G[x;b2]) 
            supposing  \mforall{}a,b,c:Base.    (G[H[b;a];c]  \msim{}  G[b;J[a;c]]) 
        supposing  \mforall{}z:Base.  strict1(\mlambda{}x.G[z;x]) 
    supposing  strict1(\mlambda{}x.F[x])
Date html generated:
2016_05_14-AM-06_29_11
Last ObjectModification:
2016_01_14-PM-08_25_46
Theory : list_0
Home
Index