Nuprl Lemma : sqle-list_ind-list_accum
∀[F:Base]
  ∀[G:Base]
    ∀[H,J:Base].
      ∀as,b1,b2:Base.
        G[b1;rec-case(as) of
             [] => b2
             h::t =>
              r.J[h;r]] ≤ F[accumulate (with value v and list item a):
                             H[v;a]
                            over list:
                              as
                            with starting value:
                             b1)] 
        supposing ∀x:Base. (G[x;b2] ≤ F[x]) 
      supposing ∀a,b,c:Base.  (G[b;J[a;c]] ≤ G[H[b;a];c]) 
    supposing ∀z:Base. strict1(λx.G[z;x]) 
  supposing strict1(λx.F[x])
Proof
Definitions occuring in Statement : 
list_accum: list_accum, 
list_ind: list_ind, 
strict1: strict1(F)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
base: Base
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
top: Top
, 
strict1: strict1(F)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
squash: ↓T
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
nat_plus: ℕ+
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
has-value: (a)↓
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
list_ind: list_ind, 
list_accum: list_accum
Lemmas referenced : 
le_wf, 
le_weakening2, 
fixpoint-upper-bound, 
bottom-sqle, 
has-value-implies-dec-isaxiom-2, 
top_wf, 
has-value-implies-dec-ispair-2, 
lifting-strict-isaxiom, 
lifting-strict-ispair, 
lifting-strict-callbyvalue, 
fun_exp_unroll_1, 
int_subtype_base, 
cbv_sqle, 
strict1-strict4, 
nat_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
false_wf, 
subtract_wf, 
decidable__le, 
is-exception_wf, 
has-value_wf_base, 
exception-not-bottom, 
bottom_diverge, 
strictness-apply, 
fun_exp0_lemma, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
strict1_wf, 
sqle_wf_base, 
base_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
axiomSqleEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
dependent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
voidEquality, 
productElimination, 
divergentSqle, 
imageElimination, 
unionElimination, 
independent_pairFormation, 
addEquality, 
applyEquality, 
intEquality, 
minusEquality, 
dependent_set_memberEquality, 
callbyvalueIspair, 
sqleTransitivity, 
ispairExceptionCases, 
exceptionSqequal, 
sqleReflexivity, 
fixpointLeast, 
sqleRule
Latex:
\mforall{}[F:Base]
    \mforall{}[G:Base]
        \mforall{}[H,J:Base].
            \mforall{}as,b1,b2:Base.
                G[b1;rec-case(as)  of
                          []  =>  b2
                          h::t  =>
                            r.J[h;r]]  \mleq{}  F[accumulate  (with  value  v  and  list  item  a):
                                                          H[v;a]
                                                        over  list:
                                                            as
                                                        with  starting  value:
                                                          b1)] 
                supposing  \mforall{}x:Base.  (G[x;b2]  \mleq{}  F[x]) 
            supposing  \mforall{}a,b,c:Base.    (G[b;J[a;c]]  \mleq{}  G[H[b;a];c]) 
        supposing  \mforall{}z:Base.  strict1(\mlambda{}x.G[z;x]) 
    supposing  strict1(\mlambda{}x.F[x])
Date html generated:
2016_05_14-AM-06_28_10
Last ObjectModification:
2016_01_14-PM-08_27_29
Theory : list_0
Home
Index