Step
*
1
of Lemma
add-polynom-int-val
1. n : ℕ
2. ∀n:ℕn. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. ∀[p,q:polyform(n)]. ∀[rmz:𝔹]. (add-polynom(n;rmz;p;q)@l = (p@l + q@l) ∈ ℤ)
3. n = 0 ∈ ℤ
⊢ ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. ∀[p,q:ℤ]. ∀[rmz:𝔹]. (add-polynom(n;rmz;p;q)@l = (p@l + q@l) ∈ ℤ)
BY
{ (RecUnfold `add-polynom` 0
THEN HypSubst' (-1) 0
THEN Reduce 0
THEN Auto
THEN RepeatFor 2 (DVar `l')
THEN Auto
THEN All Reduce
THEN (Assert 0 ≤ ||v|| BY
Auto)
THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}
2. \mforall{}n:\mBbbN{}n
\mforall{}[l:\{l:\mBbbZ{} List| ||l|| = n\} ]. \mforall{}[p,q:polyform(n)]. \mforall{}[rmz:\mBbbB{}].
(add-polynom(n;rmz;p;q)@l = (p@l + q@l))
3. n = 0
\mvdash{} \mforall{}[l:\{l:\mBbbZ{} List| ||l|| = n\} ]. \mforall{}[p,q:\mBbbZ{}]. \mforall{}[rmz:\mBbbB{}]. (add-polynom(n;rmz;p;q)@l = (p@l + q@l))
By
Latex:
(RecUnfold `add-polynom` 0
THEN HypSubst' (-1) 0
THEN Reduce 0
THEN Auto
THEN RepeatFor 2 (DVar `l')
THEN Auto
THEN All Reduce
THEN (Assert 0 \mleq{} ||v|| BY
Auto)
THEN Auto)
Home
Index