Nuprl Lemma : append-impossible
∀[T:Type]. ∀[as,bs:T List]. ∀[b:T].  uiff(as = (as @ [b / bs]) ∈ (T List);False)
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
cons: [a / b]
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
list_wf, 
append_wf, 
cons_wf, 
false_wf, 
append-nil, 
subtype_rel_list, 
top_wf, 
nil_wf, 
length_wf, 
null_nil_lemma, 
btrue_wf, 
and_wf, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
append-cancellation
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
universeEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
voidEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
setEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].  \mforall{}[b:T].    uiff(as  =  (as  @  [b  /  bs]);False)
Date html generated:
2016_05_14-AM-07_39_22
Last ObjectModification:
2015_12_26-PM-02_13_14
Theory : list_1
Home
Index