Nuprl Lemma : append-impossible

[T:Type]. ∀[as,bs:T List]. ∀[b:T].  uiff(as (as [b bs]) ∈ (T List);False)


Proof




Definitions occuring in Statement :  append: as bs cons: [a b] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] false: False universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a false: False prop: subtype_rel: A ⊆B top: Top all: x:A. B[x] not: ¬A implies:  Q
Lemmas referenced :  equal_wf list_wf append_wf cons_wf false_wf append-nil subtype_rel_list top_wf nil_wf length_wf null_nil_lemma btrue_wf and_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse append-cancellation
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution because_Cache lemma_by_obid isectElimination thin hypothesisEquality voidElimination productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality universeEquality applyEquality independent_isectElimination lambdaEquality voidEquality dependent_set_memberEquality setElimination rename setEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].  \mforall{}[b:T].    uiff(as  =  (as  @  [b  /  bs]);False)



Date html generated: 2016_05_14-AM-07_39_22
Last ObjectModification: 2015_12_26-PM-02_13_14

Theory : list_1


Home Index