Nuprl Lemma : basic-bar-induction

[T:Type]. ∀[R,A:(T List) ⟶ ℙ].
  ((∀s:T List. Dec(R[s]))
   (∀s:T List. (R[s]  A[s]))
   (∀s:T List. ((∀t:T. A[s [t]])  A[s]))
   (∀alpha:ℕ ⟶ T. (↓∃n:ℕR[map(alpha;upto(n))]))
   A[[]])


Proof




Definitions occuring in Statement :  upto: upto(n) map: map(f;as) append: as bs cons: [a b] nil: [] list: List nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] guard: {T} append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  bar-induction all_wf nat_wf squash_wf exists_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf upto_wf list_wf append_wf cons_wf nil_wf decidable_wf list_ind_nil_lemma
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination functionEquality cumulativity sqequalRule lambdaEquality because_Cache applyEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation universeEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,A:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}s:T  List.  Dec(R[s]))
    {}\mRightarrow{}  (\mforall{}s:T  List.  (R[s]  {}\mRightarrow{}  A[s]))
    {}\mRightarrow{}  (\mforall{}s:T  List.  ((\mforall{}t:T.  A[s  @  [t]])  {}\mRightarrow{}  A[s]))
    {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  R[map(alpha;upto(n))]))
    {}\mRightarrow{}  A[[]])



Date html generated: 2016_05_14-PM-03_19_30
Last ObjectModification: 2015_12_26-PM-01_41_16

Theory : list_1


Home Index