Nuprl Lemma : cons_before

[T:Type]. ∀l:T List. ∀a,x,y:T.  (x before y ∈ [a l] ⇐⇒ ((x a ∈ T) ∧ (y ∈ l)) ∨ before y ∈ l)


Proof




Definitions occuring in Statement :  l_before: before y ∈ l l_member: (x ∈ l) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_before: before y ∈ l iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  sublist_wf cons_wf nil_wf cons_sublist_cons member_iff_sublist l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut independent_pairFormation hypothesis sqequalRule Error :unionIsType,  Error :productIsType,  Error :equalityIsType1,  Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache productElimination independent_functionElimination dependent_functionElimination promote_hyp unionElimination Error :inlFormation_alt,  Error :inrFormation_alt,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}a,x,y:T.    (x  before  y  \mmember{}  [a  /  l]  \mLeftarrow{}{}\mRightarrow{}  ((x  =  a)  \mwedge{}  (y  \mmember{}  l))  \mvee{}  x  before  y  \mmember{}  l)



Date html generated: 2019_06_20-PM-01_23_32
Last ObjectModification: 2018_09_29-PM-00_28_12

Theory : list_1


Home Index