Nuprl Lemma : member_iff_sublist

[T:Type]. ∀x:T. ∀L:T List.  ((x ∈ L) ⇐⇒ [x] ⊆ L)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 l_member: (x ∈ l) cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  sublist: L1 ⊆ L2 l_member: (x ∈ l) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T top: Top exists: x:A. B[x] cand: c∧ B prop: so_lambda: λ2x.t[x] nat: uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A so_apply: x[s] rev_implies:  Q subtype_rel: A ⊆B int_seg: {i..j-} guard: {T} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) increasing: increasing(f;k) subtract: m sq_type: SQType(T) select: L[n] cons: [a b] less_than: a < b squash: T true: True
Lemmas referenced :  length_of_cons_lemma length_of_nil_lemma exists_wf nat_wf less_than_wf length_wf equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf int_seg_wf cons_wf nil_wf increasing_wf length_wf_nat all_wf int_seg_properties decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma non_neg_length lelt_wf list_wf false_wf le_wf length-singleton decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtype_base_sq set_subtype_base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis productElimination isectElimination lambdaEquality productEquality setElimination rename because_Cache cumulativity hypothesisEquality independent_isectElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality computeAll functionEquality functionExtensionality applyEquality addEquality independent_functionElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality universeEquality instantiate imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:T  List.    ((x  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  [x]  \msubseteq{}  L)



Date html generated: 2017_04_14-AM-09_29_39
Last ObjectModification: 2017_02_27-PM-04_02_02

Theory : list_1


Home Index