Nuprl Lemma : decidable__iseg
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (∀L1,L2:T List.  Dec(L1 ≤ L2)))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
decidable_functionality, 
iseg_wf, 
and_wf, 
le_wf, 
length_wf, 
equal_wf, 
list_wf, 
firstn_wf, 
iseg-iff-firstn, 
decidable__and2, 
decidable__le, 
decidable__equal_list, 
all_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
isect_memberEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}L1,L2:T  List.    Dec(L1  \mleq{}  L2)))
Date html generated:
2016_05_14-PM-01_31_32
Last ObjectModification:
2015_12_26-PM-05_24_17
Theory : list_1
Home
Index