Nuprl Lemma : decidable__iseg

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀L1,L2:T List.  Dec(L1 ≤ L2)))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  decidable_functionality iseg_wf and_wf le_wf length_wf equal_wf list_wf firstn_wf iseg-iff-firstn decidable__and2 decidable__le decidable__equal_list all_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination dependent_functionElimination productElimination isect_memberEquality because_Cache sqequalRule lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}L1,L2:T  List.    Dec(L1  \mleq{}  L2)))



Date html generated: 2016_05_14-PM-01_31_32
Last ObjectModification: 2015_12_26-PM-05_24_17

Theory : list_1


Home Index