Nuprl Lemma : decidable__equal_list

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀xs,ys:T List.  Dec(xs ys ∈ (T List))))


Proof




Definitions occuring in Statement :  list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: decidable: Dec(P) or: P ∨ Q not: ¬A and: P ∧ Q top: Top false: False squash: T true: True cand: c∧ B uimplies: supposing a ge: i ≥  subtype_rel: A ⊆B
Lemmas referenced :  tl_wf reduce_tl_cons_lemma top_wf subtype_rel_list length_cons_ge_one length_wf ge_wf squash_wf hd_wf reduce_hd_cons_lemma decidable__and2 cons_neq_nil btrue_neq_bfalse bfalse_wf null_cons_lemma null_wf and_wf btrue_wf null_nil_lemma not_wf cons_wf nil_wf equal_wf decidable_wf list_wf all_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_functionElimination because_Cache rename dependent_functionElimination universeEquality inlFormation inrFormation dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry applyEquality setElimination productElimination setEquality isect_memberEquality voidElimination voidEquality unionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed introduction independent_isectElimination

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}xs,ys:T  List.    Dec(xs  =  ys)))



Date html generated: 2016_05_14-AM-07_39_53
Last ObjectModification: 2016_01_15-AM-08_36_41

Theory : list_1


Home Index