Nuprl Lemma : finite-decidable-set
∀[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. Dec(P[x])) ⇒ (finite-type({x:T| P[x]} ) ⇐⇒ ∃L:T List. ∀x:T. (P[x] ⇒ (x ∈ L))))
Proof
Definitions occuring in Statement : 
finite-type: finite-type(T), 
l_member: (x ∈ l), 
list: T List, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
bfalse: ff, 
false: False, 
not: ¬A, 
uimplies: b supposing a, 
guard: {T}
Lemmas referenced : 
exists_wf, 
list_wf, 
all_wf, 
iff_wf, 
l_member_wf, 
finite-set-type, 
sq_stable_from_decidable, 
finite-type_wf, 
subtype_rel_self, 
decidable_wf, 
or_wf, 
not_wf, 
btrue_wf, 
bfalse_wf, 
equal_wf, 
assert_wf, 
true_wf, 
false_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
set_wf, 
assert_witness, 
member_filter
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
addLevel, 
productElimination, 
impliesFunctionality, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
setEquality, 
instantiate, 
universeEquality, 
cumulativity, 
dependent_pairFormation, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
natural_numberEquality, 
voidElimination, 
independent_isectElimination, 
setElimination, 
productEquality, 
allFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (finite-type(\{x:T|  P[x]\}  )  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  \mforall{}x:T.  (P[x]  {}\mRightarrow{}  (x  \mmember{}  L))))
 Date html generated: 
2019_06_20-PM-01_32_45
 Last ObjectModification: 
2018_08_21-PM-01_55_21
Theory : list_1
Home
Index