Nuprl Lemma : finite-decidable-set

[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. Dec(P[x]))  (finite-type({x:T| P[x]} ⇐⇒ ∃L:T List. ∀x:T. (P[x]  (x ∈ L))))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) l_member: (x ∈ l) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q all: x:A. B[x] subtype_rel: A ⊆B exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff false: False not: ¬A uimplies: supposing a guard: {T}
Lemmas referenced :  exists_wf list_wf all_wf iff_wf l_member_wf finite-set-type sq_stable_from_decidable finite-type_wf subtype_rel_self decidable_wf or_wf not_wf btrue_wf bfalse_wf equal_wf assert_wf true_wf false_wf filter_wf5 subtype_rel_dep_function bool_wf set_wf assert_witness member_filter
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality addLevel productElimination impliesFunctionality independent_functionElimination dependent_functionElimination because_Cache setEquality instantiate universeEquality cumulativity dependent_pairFormation rename equalityTransitivity equalitySymmetry unionEquality unionElimination natural_numberEquality voidElimination independent_isectElimination setElimination productEquality allFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (finite-type(\{x:T|  P[x]\}  )  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  \mforall{}x:T.  (P[x]  {}\mRightarrow{}  (x  \mmember{}  L))))



Date html generated: 2019_06_20-PM-01_32_45
Last ObjectModification: 2018_08_21-PM-01_55_21

Theory : list_1


Home Index