Step
*
2
2
of Lemma
finite-partition
1. n : ℤ
2. [%1] : 0 < n
3. k : ℕ
4. c : ℕn ⟶ ℕk
5. p : ℕk ⟶ (ℕ List)
6. Σ(||p j|| | j < k) = (n - 1) ∈ ℤ
7. ∀j:ℕk. ∀x,y:ℕ||p j||. p j[x] > p j[y] supposing x < y
8. ∀j:ℕk. ∀x:ℕ||p j||. (p j[x] < n - 1 c∧ ((c p j[x]) = j ∈ ℤ))
⊢ ∀j:ℕk. ∀x,y:ℕ||if (c (n - 1) =z j) then [n - 1 / (p j)] else p j fi ||.
if (c (n - 1) =z j) then [n - 1 / (p j)] else p j fi [x] > if (c (n - 1) =z j) then [n - 1 / (p j)] else p j fi [y]
supposing x < y
BY
{ TACTIC:((ParallelOp (-2)) THEN AutoSplit) }
1
1. n : ℤ
2. [%1] : 0 < n
3. k : ℕ
4. c : ℕn ⟶ ℕk
5. p : ℕk ⟶ (ℕ List)
6. Σ(||p j|| | j < k) = (n - 1) ∈ ℤ
7. ∀j:ℕk. ∀x,y:ℕ||p j||. p j[x] > p j[y] supposing x < y
8. ∀j:ℕk. ∀x:ℕ||p j||. (p j[x] < n - 1 c∧ ((c p j[x]) = j ∈ ℤ))
9. j : ℕk
10. ∀x,y:ℕ||p j||. p j[x] > p j[y] supposing x < y
11. (c (n - 1)) = j ∈ ℤ
⊢ ∀x@0,y:ℕ||p j|| + 1. [n - 1 / (p j)][x@0] > [n - 1 / (p j)][y] supposing x@0 < y
Latex:
Latex:
1. n : \mBbbZ{}
2. [\%1] : 0 < n
3. k : \mBbbN{}
4. c : \mBbbN{}n {}\mrightarrow{} \mBbbN{}k
5. p : \mBbbN{}k {}\mrightarrow{} (\mBbbN{} List)
6. \mSigma{}(||p j|| | j < k) = (n - 1)
7. \mforall{}j:\mBbbN{}k. \mforall{}x,y:\mBbbN{}||p j||. p j[x] > p j[y] supposing x < y
8. \mforall{}j:\mBbbN{}k. \mforall{}x:\mBbbN{}||p j||. (p j[x] < n - 1 c\mwedge{} ((c p j[x]) = j))
\mvdash{} \mforall{}j:\mBbbN{}k. \mforall{}x,y:\mBbbN{}||if (c (n - 1) =\msubz{} j) then [n - 1 / (p j)] else p j fi ||.
if (c (n - 1) =\msubz{} j) then [n - 1 / (p j)] else p j fi [x] > if (c (n - 1) =\msubz{} j)
then [n - 1 / (p j)]
else p j
fi [y]
supposing x < y
By
Latex:
TACTIC:((ParallelOp (-2)) THEN AutoSplit)
Home
Index