Nuprl Lemma : firstn_last_mklist_sq

[T:Type]. ∀[F:ℕ ⟶ T]. ∀n:ℕ+(mklist(n;F) firstn(n 1;mklist(n;F)) [last(mklist(n;F))]) supposing T ⊆Base


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) firstn: firstn(n;as) last: last(L) append: as bs cons: [a b] nil: [] nat_plus: + nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] subtract: m natural_number: $n base: Base universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] sq_type: SQType(T) implies:  Q guard: {T}
Lemmas referenced :  subtype_base_sq list_subtype_base firstn_last_mklist nat_plus_wf nat_wf subtype_rel_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis dependent_functionElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination sqequalRule lambdaEquality sqequalAxiom functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[F:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}n:\mBbbN{}\msupplus{}.  (mklist(n;F)  \msim{}  firstn(n  -  1;mklist(n;F))  @  [last(mklist(n;F))]) 
    supposing  T  \msubseteq{}r  Base



Date html generated: 2016_05_14-PM-02_06_25
Last ObjectModification: 2015_12_26-PM-05_08_00

Theory : list_1


Home Index