Nuprl Lemma : firstn_last_mklist_sq
∀[T:Type]. ∀[F:ℕ ⟶ T]. ∀n:ℕ+. (mklist(n;F) ~ firstn(n - 1;mklist(n;F)) @ [last(mklist(n;F))]) supposing T ⊆r Base
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f)
, 
firstn: firstn(n;as)
, 
last: last(L)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
base: Base
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
list_subtype_base, 
firstn_last_mklist, 
nat_plus_wf, 
nat_wf, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
sqequalAxiom, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[F:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}n:\mBbbN{}\msupplus{}.  (mklist(n;F)  \msim{}  firstn(n  -  1;mklist(n;F))  @  [last(mklist(n;F))]) 
    supposing  T  \msubseteq{}r  Base
Date html generated:
2016_05_14-PM-02_06_25
Last ObjectModification:
2015_12_26-PM-05_08_00
Theory : list_1
Home
Index