Nuprl Lemma : firstn_last_mklist
∀[T:Type]. ∀[F:ℕ ⟶ T].  ∀n:ℕ+. (mklist(n;F) = (firstn(n - 1;mklist(n;F)) @ [last(mklist(n;F))]) ∈ (T List))
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f), 
firstn: firstn(n;as), 
last: last(L), 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
nat_plus: ℕ+, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
subtract: n - m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
top: Top, 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
prop: ℙ, 
nat: ℕ, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
guard: {T}, 
le: A ≤ B, 
less_than': less_than'(a;b), 
uiff: uiff(P;Q), 
ge: i ≥ j , 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
mklist_length, 
nat_plus_subtype_nat, 
nat_plus_properties, 
decidable__equal_int, 
subtract_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformand_wf, 
intformle_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
le_wf, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
int_subtype_base, 
nat_plus_wf, 
non_null_iff_length, 
mklist_wf, 
subtype_rel_dep_function, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_list, 
top_wf, 
nat_properties, 
decidable__lt, 
length_wf, 
subtract-is-int-iff, 
list_wf, 
equal_wf, 
squash_wf, 
true_wf, 
firstn_last, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
instantiate, 
cumulativity, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
universeEquality, 
productElimination, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[F:\mBbbN{}  {}\mrightarrow{}  T].    \mforall{}n:\mBbbN{}\msupplus{}.  (mklist(n;F)  =  (firstn(n  -  1;mklist(n;F))  @  [last(mklist(n;F))]))
Date html generated:
2017_04_17-AM-07_59_40
Last ObjectModification:
2017_02_27-PM-04_30_28
Theory : list_1
Home
Index