Nuprl Lemma : firstn_last_mklist

[T:Type]. ∀[F:ℕ ⟶ T].  ∀n:ℕ+(mklist(n;F) (firstn(n 1;mklist(n;F)) [last(mklist(n;F))]) ∈ (T List))


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) firstn: firstn(n;as) last: last(L) append: as bs cons: [a b] nil: [] list: List nat_plus: + nat: uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] top: Top subtype_rel: A ⊆B nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop: nat: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) ge: i ≥  true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  mklist_length nat_plus_subtype_nat nat_plus_properties decidable__equal_int subtract_wf satisfiable-full-omega-tt intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformand_wf intformle_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_formula_prop_less_lemma le_wf subtype_base_sq nat_wf set_subtype_base int_subtype_base nat_plus_wf non_null_iff_length mklist_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_list top_wf nat_properties decidable__lt length_wf subtract-is-int-iff list_wf equal_wf squash_wf true_wf firstn_last iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality applyEquality hypothesis setElimination rename dependent_functionElimination natural_numberEquality because_Cache unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll dependent_set_memberEquality equalityTransitivity equalitySymmetry independent_pairFormation instantiate cumulativity independent_functionElimination axiomEquality functionEquality universeEquality productElimination applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed imageElimination imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[F:\mBbbN{}  {}\mrightarrow{}  T].    \mforall{}n:\mBbbN{}\msupplus{}.  (mklist(n;F)  =  (firstn(n  -  1;mklist(n;F))  @  [last(mklist(n;F))]))



Date html generated: 2017_04_17-AM-07_59_40
Last ObjectModification: 2017_02_27-PM-04_30_28

Theory : list_1


Home Index