Nuprl Lemma : firstn_last

[T:Type]. ∀[L:T List].  (firstn(||L|| 1;L) [last(L)]) ∈ (T List) supposing ¬↑null(L)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) last: last(L) length: ||as|| null: null(as) append: as bs cons: [a b] nil: [] list: List assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} or: P ∨ Q firstn: firstn(n;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] assert: b ifthenelse: if then else fi  btrue: tt append: as bs true: True cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B bfalse: ff bool: 𝔹 unit: Unit uiff: uiff(P;Q) subtract: m iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf intformeq_wf int_formula_prop_eq_lemma list-cases null_nil_lemma list_ind_nil_lemma not_wf true_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf assert_wf null_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le null_cons_lemma length_of_cons_lemma false_wf nat_wf list_wf lt_int_wf length_wf equal-wf-T-base bool_wf list_ind_cons_lemma le_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int cons_wf squash_wf istype-universe equal_wf length_of_nil_lemma append_wf firstn_wf last_wf bfalse_wf assert_elim btrue_neq_bfalse nil_wf subtype_rel_self iff_weakening_equal last_cons add-subtract-cancel last_singleton length_zero non_neg_length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry applyLambdaEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination promote_hyp hypothesis_subsumption productElimination Error :equalityIsType1,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate imageElimination Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality intEquality universeEquality addEquality equalityElimination imageMemberEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    L  =  (firstn(||L||  -  1;L)  @  [last(L)])  supposing  \mneg{}\muparrow{}null(L)



Date html generated: 2019_06_20-PM-01_34_42
Last ObjectModification: 2018_10_06-AM-11_23_14

Theory : list_1


Home Index