Nuprl Lemma : firstn_last
∀[T:Type]. ∀[L:T List].  L = (firstn(||L|| - 1;L) @ [last(L)]) ∈ (T List) supposing ¬↑null(L)
Proof
Definitions occuring in Statement : 
firstn: firstn(n;as)
, 
last: last(L)
, 
length: ||as||
, 
null: null(as)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
subtract: n - m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
firstn: firstn(n;as)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
append: as @ bs
, 
true: True
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list-cases, 
null_nil_lemma, 
list_ind_nil_lemma, 
not_wf, 
true_wf, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
assert_wf, 
null_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
null_cons_lemma, 
length_of_cons_lemma, 
false_wf, 
nat_wf, 
list_wf, 
lt_int_wf, 
length_wf, 
equal-wf-T-base, 
bool_wf, 
list_ind_cons_lemma, 
le_int_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
cons_wf, 
squash_wf, 
istype-universe, 
equal_wf, 
length_of_nil_lemma, 
append_wf, 
firstn_wf, 
last_wf, 
bfalse_wf, 
assert_elim, 
btrue_neq_bfalse, 
nil_wf, 
subtype_rel_self, 
iff_weakening_equal, 
last_cons, 
add-subtract-cancel, 
last_singleton, 
length_zero, 
non_neg_length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :equalityIsType1, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
instantiate, 
imageElimination, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
universeEquality, 
addEquality, 
equalityElimination, 
imageMemberEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    L  =  (firstn(||L||  -  1;L)  @  [last(L)])  supposing  \mneg{}\muparrow{}null(L)
Date html generated:
2019_06_20-PM-01_34_42
Last ObjectModification:
2018_10_06-AM-11_23_14
Theory : list_1
Home
Index