Nuprl Lemma : last_cons
∀[T:Type]. ∀[L:T List]. ∀[x:T].  last([x / L]) = last(L) ∈ T supposing ¬↑null(L)
Proof
Definitions occuring in Statement : 
last: last(L), 
null: null(as), 
cons: [a / b], 
list: T List, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
prop: ℙ, 
not: ¬A, 
false: False, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
last_cons2, 
subtype_rel_list, 
top_wf, 
null_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
null_nil_lemma, 
btrue_wf, 
not_assert_elim, 
and_wf, 
equal_wf, 
list_wf, 
btrue_neq_bfalse, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
last_wf, 
assert_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
cumulativity, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
baseClosed, 
addLevel, 
impliesFunctionality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x:T].    last([x  /  L])  =  last(L)  supposing  \mneg{}\muparrow{}null(L)
Date html generated:
2017_04_14-AM-08_39_56
Last ObjectModification:
2017_02_27-PM-03_30_04
Theory : list_0
Home
Index