Nuprl Lemma : non_null_iff_length

[L:Top List]. uiff(¬↑null(L);0 < ||L||)


Proof




Definitions occuring in Statement :  length: ||as|| null: null(as) list: List assert: b less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top not: ¬A natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q true: True false: False prop: less_than: a < b squash: T less_than': less_than'(a;b) cons: [a b] top: Top bfalse: ff nat_plus: + guard: {T} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  top_wf list-cases null_nil_lemma length_of_nil_lemma not_wf true_wf less_than_wf product_subtype_list null_cons_lemma length_of_cons_lemma add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf length_wf member-less_than assert_wf null_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality unionElimination sqequalRule independent_pairFormation independent_functionElimination natural_numberEquality voidElimination lambdaFormation imageElimination productElimination lambdaEquality promote_hyp hypothesis_subsumption isect_memberEquality voidEquality dependent_set_memberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename pointwiseFunctionality baseApply closedConclusion independent_isectElimination dependent_pairFormation int_eqEquality intEquality computeAll addEquality independent_pairEquality

Latex:
\mforall{}[L:Top  List].  uiff(\mneg{}\muparrow{}null(L);0  <  ||L||)



Date html generated: 2017_04_17-AM-07_36_09
Last ObjectModification: 2017_02_27-PM-04_10_22

Theory : list_1


Home Index