Nuprl Lemma : flip_twice

[k:ℤ]. ∀[x,y,i:ℕk].  (((y, x) ((y, x) i)) i ∈ ℤ)


Proof




Definitions occuring in Statement :  flip: (i, j) int_seg: {i..j-} uall: [x:A]. B[x] apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T compose: g int_seg: {i..j-} true: True squash: T prop: subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  int_seg_wf equal_wf squash_wf true_wf flip_inverse subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :inhabitedIsType,  hypothesisEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality extract_by_obid natural_numberEquality because_Cache Error :universeIsType,  intEquality setElimination rename applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[x,y,i:\mBbbN{}k].    (((y,  x)  ((y,  x)  i))  =  i)



Date html generated: 2019_06_20-PM-01_36_14
Last ObjectModification: 2018_09_26-PM-05_52_32

Theory : list_1


Home Index