Nuprl Lemma : flip_inverse

[k:ℤ]. ∀[x,y:ℕk].  (((y, x) (y, x)) x.x) ∈ (ℕk ⟶ ℕk))


Proof




Definitions occuring in Statement :  flip: (i, j) compose: g int_seg: {i..j-} uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T flip: (i, j) compose: g int_seg: {i..j-} implies:  Q guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_seg_wf eq_int_wf ifthenelse_wf bool_wf equal-wf-T-base assert_wf equal_wf int_seg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma bnot_wf not_wf lelt_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int and_wf eq_int_eq_true btrue_wf iff_weakening_equal uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule because_Cache hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality isect_memberEquality axiomEquality intEquality setElimination rename equalityTransitivity equalitySymmetry baseClosed independent_functionElimination lambdaFormation productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality equalityElimination promote_hyp instantiate cumulativity applyLambdaEquality applyEquality imageElimination imageMemberEquality impliesFunctionality

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[x,y:\mBbbN{}k].    (((y,  x)  o  (y,  x))  =  (\mlambda{}x.x))



Date html generated: 2017_04_17-AM-08_06_33
Last ObjectModification: 2017_02_27-PM-04_35_40

Theory : list_1


Home Index