Nuprl Lemma : flip_inverse
∀[k:ℤ]. ∀[x,y:ℕk].  (((y, x) o (y, x)) = (λx.x) ∈ (ℕk ⟶ ℕk))
Proof
Definitions occuring in Statement : 
flip: (i, j)
, 
compose: f o g
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
flip: (i, j)
, 
compose: f o g
, 
int_seg: {i..j-}
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
int_seg_wf, 
eq_int_wf, 
ifthenelse_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
equal_wf, 
int_seg_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
bnot_wf, 
not_wf, 
lelt_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
and_wf, 
eq_int_eq_true, 
btrue_wf, 
iff_weakening_equal, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
sqequalRule, 
because_Cache, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
intEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
lambdaFormation, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
applyLambdaEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
impliesFunctionality
Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[x,y:\mBbbN{}k].    (((y,  x)  o  (y,  x))  =  (\mlambda{}x.x))
Date html generated:
2017_04_17-AM-08_06_33
Last ObjectModification:
2017_02_27-PM-04_35_40
Theory : list_1
Home
Index