Nuprl Lemma : imax-list-append

[as,bs:ℤ List].  imax-list(as bs) imax-list(bs as) ∈ ℤ supposing 0 < ||as bs||


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) length: ||as|| append: as bs list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a imax-list: imax-list(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] assoc: Assoc(T;op) infix_ap: y squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q comm: Comm(T;op)
Lemmas referenced :  combine-list-append imax_wf equal_wf squash_wf true_wf imax_assoc iff_weakening_equal imax_com less_than_wf length_wf append_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule lambdaEquality hypothesisEquality hypothesis independent_isectElimination applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination because_Cache isect_memberEquality axiomEquality

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].    imax-list(as  @  bs)  =  imax-list(bs  @  as)  supposing  0  <  ||as  @  bs||



Date html generated: 2017_04_17-AM-07_39_31
Last ObjectModification: 2017_02_27-PM-04_12_46

Theory : list_1


Home Index