Nuprl Lemma : imax-list-append
∀[as,bs:ℤ List].  imax-list(as @ bs) = imax-list(bs @ as) ∈ ℤ supposing 0 < ||as @ bs||
Proof
Definitions occuring in Statement : 
imax-list: imax-list(L)
, 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
imax-list: imax-list(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
comm: Comm(T;op)
Lemmas referenced : 
combine-list-append, 
imax_wf, 
equal_wf, 
squash_wf, 
true_wf, 
imax_assoc, 
iff_weakening_equal, 
imax_com, 
less_than_wf, 
length_wf, 
append_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
because_Cache, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[as,bs:\mBbbZ{}  List].    imax-list(as  @  bs)  =  imax-list(bs  @  as)  supposing  0  <  ||as  @  bs||
Date html generated:
2017_04_17-AM-07_39_31
Last ObjectModification:
2017_02_27-PM-04_12_46
Theory : list_1
Home
Index