Nuprl Lemma : imax_assoc

[a,b,c:ℤ].  (imax(a;imax(b;c)) imax(imax(a;b);c) ∈ ℤ)


Proof




Definitions occuring in Statement :  imax: imax(a;b) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  imax: imax(a;b) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top has-value: (a)↓
Lemmas referenced :  value-type-has-value int-value-type le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf satisfiable-full-omega-tt intformand_wf intformle_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesis intEquality sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache extract_by_obid independent_isectElimination lambdaFormation unionElimination equalityElimination productElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination natural_numberEquality lambdaEquality int_eqEquality voidEquality independent_pairFormation computeAll callbyvalueReduce

Latex:
\mforall{}[a,b,c:\mBbbZ{}].    (imax(a;imax(b;c))  =  imax(imax(a;b);c))



Date html generated: 2017_04_14-AM-09_14_22
Last ObjectModification: 2017_02_27-PM-03_51_50

Theory : int_2


Home Index