Nuprl Lemma : imax_assoc
∀[a,b,c:ℤ].  (imax(a;imax(b;c)) = imax(imax(a;b);c) ∈ ℤ)
Proof
Definitions occuring in Statement : 
imax: imax(a;b), 
uall: ∀[x:A]. B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
imax: imax(a;b), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
has-value: (a)↓
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
intEquality, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
extract_by_obid, 
independent_isectElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
natural_numberEquality, 
lambdaEquality, 
int_eqEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
callbyvalueReduce
Latex:
\mforall{}[a,b,c:\mBbbZ{}].    (imax(a;imax(b;c))  =  imax(imax(a;b);c))
Date html generated:
2017_04_14-AM-09_14_22
Last ObjectModification:
2017_02_27-PM-03_51_50
Theory : int_2
Home
Index