Nuprl Lemma : iseg-map

[A,B:Type].  ∀f:A ⟶ B. ∀L1,L2:A List.  (L1 ≤ L2  map(f;L1) ≤ map(f;L2))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q iseg: l1 ≤ l2 exists: x:A. B[x] member: t ∈ T prop: top: Top
Lemmas referenced :  length_wf_nat equal_wf nat_wf map_append_sq map_wf append_wf list_wf iseg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut dependent_set_memberEquality hypothesis introduction extract_by_obid isectElimination cumulativity hypothesisEquality sqequalRule isect_memberEquality voidElimination voidEquality dependent_pairFormation functionExtensionality applyEquality because_Cache hyp_replacement equalitySymmetry Error :applyLambdaEquality,  setElimination rename functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L1,L2:A  List.    (L1  \mleq{}  L2  {}\mRightarrow{}  map(f;L1)  \mleq{}  map(f;L2))



Date html generated: 2016_10_21-AM-10_33_19
Last ObjectModification: 2016_07_12-AM-05_45_23

Theory : list_1


Home Index