Nuprl Lemma : l-all-decider_wf

[A:Type]
  ∀L:A List. ∀[F:{a:A| (a ∈ L)}  ⟶ ℙ]. ∀dcd:∀k:{a:A| (a ∈ L)} Dec(F[k]). (l-all-decider() dcd ∈ Dec((∀k∈L.F[k])))


Proof




Definitions occuring in Statement :  l-all-decider: l-all-decider() l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] decidable__l_all subtype_rel: A ⊆B implies:  Q
Lemmas referenced :  all_wf l_member_wf decidable_wf list_wf decidable__l_all l_all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis extract_by_obid isectElimination thin setEquality hypothesisEquality sqequalRule lambdaEquality applyEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache instantiate isectEquality

Latex:
\mforall{}[A:Type]
    \mforall{}L:A  List
        \mforall{}[F:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}]
            \mforall{}dcd:\mforall{}k:\{a:A|  (a  \mmember{}  L)\}  .  Dec(F[k]).  (l-all-decider()  L  dcd  \mmember{}  Dec((\mforall{}k\mmember{}L.F[k])))



Date html generated: 2018_05_21-PM-00_35_46
Last ObjectModification: 2018_05_19-AM-06_43_05

Theory : list_1


Home Index