Nuprl Lemma : l-all-decider_wf
∀[A:Type]
  ∀L:A List. ∀[F:{a:A| (a ∈ L)}  ⟶ ℙ]. ∀dcd:∀k:{a:A| (a ∈ L)} . Dec(F[k]). (l-all-decider() L dcd ∈ Dec((∀k∈L.F[k])))
Proof
Definitions occuring in Statement : 
l-all-decider: l-all-decider()
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable__l_all, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
Lemmas referenced : 
all_wf, 
l_member_wf, 
decidable_wf, 
list_wf, 
decidable__l_all, 
l_all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache, 
instantiate, 
isectEquality
Latex:
\mforall{}[A:Type]
    \mforall{}L:A  List
        \mforall{}[F:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}]
            \mforall{}dcd:\mforall{}k:\{a:A|  (a  \mmember{}  L)\}  .  Dec(F[k]).  (l-all-decider()  L  dcd  \mmember{}  Dec((\mforall{}k\mmember{}L.F[k])))
Date html generated:
2018_05_21-PM-00_35_46
Last ObjectModification:
2018_05_19-AM-06_43_05
Theory : list_1
Home
Index