Nuprl Lemma : l_all-cons
∀[T:Type]. ∀x:T. ∀L:T List.  ∀[P:{a:T| (a ∈ [x / L])}  ⟶ ℙ]. ((∀a∈[x / L].P[a]) 
⇐⇒ P[x] ∧ (∀a∈L.P[a]))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
l_all_cons, 
l_member_wf, 
cons_wf, 
cons_member, 
list-subtype, 
subtype_rel_list_set, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
inlFormation, 
dependent_set_memberEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
rename, 
inrFormation, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}x:T.  \mforall{}L:T  List.    \mforall{}[P:\{a:T|  (a  \mmember{}  [x  /  L])\}    {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}a\mmember{}[x  /  L].P[a])  \mLeftarrow{}{}\mRightarrow{}  P[x]  \mwedge{}  (\mforall{}a\mmember{}L.P[a]))
Date html generated:
2016_05_14-AM-07_49_48
Last ObjectModification:
2015_12_26-PM-04_45_40
Theory : list_1
Home
Index