Nuprl Lemma : l_all-cons

[T:Type]. ∀x:T. ∀L:T List.  ∀[P:{a:T| (a ∈ [x L])}  ⟶ ℙ]. ((∀a∈[x L].P[a]) ⇐⇒ P[x] ∧ (∀a∈L.P[a]))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) cons: [a b] list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a guard: {T}
Lemmas referenced :  l_all_cons l_member_wf cons_wf cons_member list-subtype subtype_rel_list_set equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis dependent_functionElimination because_Cache productElimination independent_functionElimination inlFormation dependent_set_memberEquality cumulativity equalityTransitivity equalitySymmetry applyEquality sqequalRule lambdaEquality independent_isectElimination setElimination rename inrFormation functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}x:T.  \mforall{}L:T  List.    \mforall{}[P:\{a:T|  (a  \mmember{}  [x  /  L])\}    {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}a\mmember{}[x  /  L].P[a])  \mLeftarrow{}{}\mRightarrow{}  P[x]  \mwedge{}  (\mforall{}a\mmember{}L.P[a]))



Date html generated: 2016_05_14-AM-07_49_48
Last ObjectModification: 2015_12_26-PM-04_45_40

Theory : list_1


Home Index