Nuprl Lemma : l_all_fwd

[T:Type]. ∀[P:T ⟶ ℙ].  ∀L:T List. ∀x:T.  ((x ∈ L)  (∀y∈L.P[y])  P[x])


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: iff: ⇐⇒ Q and: P ∧ Q guard: {T}
Lemmas referenced :  l_all_iff l_member_wf l_all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality sqequalRule lambdaEquality applyEquality setElimination rename hypothesis setEquality productElimination independent_functionElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:T  List.  \mforall{}x:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (\mforall{}y\mmember{}L.P[y])  {}\mRightarrow{}  P[x])



Date html generated: 2019_06_20-PM-01_24_43
Last ObjectModification: 2018_08_24-PM-10_48_27

Theory : list_1


Home Index