Nuprl Lemma : l_contains-member

[T:Type]. ∀A,B:T List.  (A ⊆  {∀x:T. ((x ∈ A)  (x ∈ B))})


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B l_member: (x ∈ l) list: List uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  l_contains: A ⊆ B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q guard: {T}
Lemmas referenced :  l_all_iff l_member_wf l_all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination lambdaEquality setElimination rename hypothesis setEquality productElimination independent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}A,B:T  List.    (A  \msubseteq{}  B  {}\mRightarrow{}  \{\mforall{}x:T.  ((x  \mmember{}  A)  {}\mRightarrow{}  (x  \mmember{}  B))\})



Date html generated: 2016_05_14-AM-07_53_28
Last ObjectModification: 2015_12_26-PM-04_47_29

Theory : list_1


Home Index