Nuprl Lemma : l_contains_disjoint
∀[T:Type]. ∀[A,B,C:T List].  (l_disjoint(T;B;C)) supposing (l_disjoint(T;A;C) and B ⊆ A)
Proof
Definitions occuring in Statement : 
l_disjoint: l_disjoint(T;l1;l2)
, 
l_contains: A ⊆ B
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
l_contains: A ⊆ B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
l_member_wf, 
all_wf, 
not_wf, 
l_all_iff, 
l_all_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
independent_pairFormation, 
productElimination, 
promote_hyp, 
voidElimination, 
productEquality, 
extract_by_obid, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
addLevel, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
cumulativity, 
isectEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A,B,C:T  List].    (l\_disjoint(T;B;C))  supposing  (l\_disjoint(T;A;C)  and  B  \msubseteq{}  A)
Date html generated:
2019_06_20-PM-01_27_01
Last ObjectModification:
2018_08_24-PM-11_15_23
Theory : list_1
Home
Index