Nuprl Lemma : l_contains_singleton

[T:Type]. ∀L:T List. ∀a:T.  ([a] ⊆ ⇐⇒ (a ∈ L))


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B l_member: (x ∈ l) cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  and_wf l_member_wf l_contains_wf nil_wf l_contains_nil l_contains_cons cons_wf iff_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation sqequalHypSubstitution productElimination thin hypothesis lemma_by_obid isectElimination hypothesisEquality dependent_functionElimination addLevel impliesFunctionality because_Cache independent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}a:T.    ([a]  \msubseteq{}  L  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  L))



Date html generated: 2016_05_14-AM-07_54_43
Last ObjectModification: 2015_12_26-PM-04_48_57

Theory : list_1


Home Index