Nuprl Lemma : l_contains_singleton
∀[T:Type]. ∀L:T List. ∀a:T.  ([a] ⊆ L ⇐⇒ (a ∈ L))
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B, 
l_member: (x ∈ l), 
cons: [a / b], 
nil: [], 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
and_wf, 
l_member_wf, 
l_contains_wf, 
nil_wf, 
l_contains_nil, 
l_contains_cons, 
cons_wf, 
iff_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
addLevel, 
impliesFunctionality, 
because_Cache, 
independent_functionElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}a:T.    ([a]  \msubseteq{}  L  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  L))
 Date html generated: 
2016_05_14-AM-07_54_43
 Last ObjectModification: 
2015_12_26-PM-04_48_57
Theory : list_1
Home
Index