Nuprl Lemma : l_contains_cons
∀[T:Type]. ∀L:T List. ∀a:T. ∀as:T List.  ([a / as] ⊆ L 
⇐⇒ (a ∈ L) ∧ as ⊆ L)
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
l_contains: A ⊆ B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_wf, 
and_wf, 
l_member_wf, 
l_all_wf, 
l_all_cons, 
cons_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
independent_pairFormation, 
productElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
because_Cache, 
addLevel, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}a:T.  \mforall{}as:T  List.    ([a  /  as]  \msubseteq{}  L  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  L)  \mwedge{}  as  \msubseteq{}  L)
Date html generated:
2016_05_14-AM-07_54_39
Last ObjectModification:
2015_12_26-PM-04_48_53
Theory : list_1
Home
Index