Nuprl Lemma : l_contains_cons

[T:Type]. ∀L:T List. ∀a:T. ∀as:T List.  ([a as] ⊆ ⇐⇒ (a ∈ L) ∧ as ⊆ L)


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B l_member: (x ∈ l) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T l_contains: A ⊆ B iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  list_wf and_wf l_member_wf l_all_wf l_all_cons cons_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeEquality independent_pairFormation productElimination sqequalRule lambdaEquality setElimination rename setEquality because_Cache addLevel impliesFunctionality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}a:T.  \mforall{}as:T  List.    ([a  /  as]  \msubseteq{}  L  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  L)  \mwedge{}  as  \msubseteq{}  L)



Date html generated: 2016_05_14-AM-07_54_39
Last ObjectModification: 2015_12_26-PM-04_48_53

Theory : list_1


Home Index