Nuprl Lemma : l_disjoint_cons

[T:Type]. ∀[a,b:T List]. ∀[x:T].  uiff(l_disjoint(T;a;[x b]);(¬(x ∈ a)) ∧ l_disjoint(T;a;b))


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) l_member: (x ∈ l) cons: [a b] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] l_disjoint: l_disjoint(T;l1;l2) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma l_member_wf and_wf not_wf l_disjoint_wf l_disjoint_singleton cons_wf nil_wf uiff_wf iff_weakening_uiff append_wf l_disjoint_append list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis independent_pairFormation isect_memberFormation introduction lambdaFormation productElimination independent_functionElimination isectElimination hypothesisEquality independent_pairEquality lambdaEquality because_Cache addLevel independent_isectElimination cumulativity universeEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T  List].  \mforall{}[x:T].    uiff(l\_disjoint(T;a;[x  /  b]);(\mneg{}(x  \mmember{}  a))  \mwedge{}  l\_disjoint(T;a;b))



Date html generated: 2016_05_14-AM-07_56_09
Last ObjectModification: 2015_12_26-PM-04_50_30

Theory : list_1


Home Index