Step
*
of Lemma
l_disjoint_cons2
∀[T:Type]. ∀[a,b:T List]. ∀[x:T].  uiff(l_disjoint(T;[x / b];a);(¬(x ∈ a)) ∧ l_disjoint(T;b;a))
BY
{ ((UnivCD THENA Auto) THEN (RWO "l_disjoint-symmetry" 0 THENA Auto) THEN RWO "l_disjoint_cons" 0 THEN Auto) }
Latex:
Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T  List].  \mforall{}[x:T].    uiff(l\_disjoint(T;[x  /  b];a);(\mneg{}(x  \mmember{}  a))  \mwedge{}  l\_disjoint(T;b;a))
By
Latex:
((UnivCD  THENA  Auto)
  THEN  (RWO  "l\_disjoint-symmetry"  0  THENA  Auto)
  THEN  RWO  "l\_disjoint\_cons"  0
  THEN  Auto)
Home
Index