Nuprl Lemma : l_disjoint_cons2

[T:Type]. ∀[a,b:T List]. ∀[x:T].  uiff(l_disjoint(T;[x b];a);(¬(x ∈ a)) ∧ l_disjoint(T;b;a))


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) l_member: (x ∈ l) cons: [a b] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] l_disjoint: l_disjoint(T;l1;l2) all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  l_member_wf and_wf not_wf l_disjoint_wf iff_weakening_uiff l_disjoint_cons cons_wf uiff_wf l_disjoint-symmetry list_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction lambdaFormation thin sqequalHypSubstitution productElimination hypothesis independent_functionElimination voidElimination lemma_by_obid isectElimination hypothesisEquality sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination because_Cache addLevel independent_isectElimination cumulativity universeEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T  List].  \mforall{}[x:T].    uiff(l\_disjoint(T;[x  /  b];a);(\mneg{}(x  \mmember{}  a))  \mwedge{}  l\_disjoint(T;b;a))



Date html generated: 2016_05_14-PM-01_26_41
Last ObjectModification: 2015_12_26-PM-04_50_23

Theory : list_1


Home Index